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1 Introduction

Turbulent flow is the most frequently encountered type of viscous flow, yet a quantitative
physical understanding of turbulence remains an unsolved problem. This is true even for
the simple case of flow in a straight pipe. We do not know how energy is transferred from
the driving force, the pressure gradient, to the turbulent fluid motion. Hence, this simple
case provides a starting point for investigations in turbulent flow.

Over the years, many measurements have been made in pipe flows and other wall-
bounded flow fields, but the conclusions drawn from the measurements have not been
final. While it is possible to measure the instantaneous three components of fluid velocity
using laser-Doppler velocimetry, this information provides a very small glimpse of the
complete picture. Even with several velocity probes in the flow field and at the wall[l],
the picture is incomplete. New experimental techniques, such as pulsed laser velocimetry
(which allows planes of instantaneous velocity to be measured), are providing more data
about the structure of turbulent wall-bounded flow than any technique to date. None-the-
less, an accurate model of the energy transfer process is still lacking.

1.1 Relevance To Aerodynamics and Ballistics

Fluid turbulence is important for the computational fluid dynamics solution of the flow field
around a projectile in flight. Within this flow field are wall-bounded flows, free shear flows,
and wake flows. If the projectile is rocket assisted, has a tracer, or contains a base-burn
system, then the flow field may also contain -jets. These four distinct types of turbulent flow
(free and wall-bounded shear flow, wakes, and jets) span the varieties of fluid turbulence.
Each variety has turbulence models, such as mixing length or production-dissipation, that
are based on empirical data and require tuning for a specific application. Direct simulation
has no such models, but has severe limits in the complexity of the geometry, the size of
the Reynolds numbers, and the time required to achieve fully developed turbulent flow.

In spite of the limits, direct simulation provides information that is unavailable from
physical experiments, namely the full three-dimensional time-varying flow field. In this
way, direct simulation is a "computer experiment" that can be used to tune turbulence
models. The long range goal, however, is to develop more complete models for fluid tur-
bulence needed by engineers to compute the mean flow field surrounding a projectile. The
steps to this goal include using the direct simulation to obtain a flow field for comparison
to large eddy simulation of the small scale motion. This may lead to better understanding
and, ultimately, to better models of fluid turbulence.

1.2 The Universal Law of the Wall

The early measurements of velocity in wall-bounded flows allowed the construction of the
"Universal Law of the Wall" that is depicted in Figure 1. This figure shows that the
streamwise fluid velocity component is zero-valued at the wall. Within the "viscous wall

1
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Figure 1: Regions in Wall Bounded Flows

layer" (so called because of the strong effects of viscosity), the velocity increases to a value
near that of the time-averaged maximum fluid velocity. The region beyond the viscous
wall layer is referred to as the outer flow. As defined in this report, the viscous wall layer
contains the viscous (also called laminar or linear) sublayer and the buffer layer, which
are commonly mentioned in the literature[2]. The outer flow is sometimes called the core
region, and it is a combination of the inertial (or logarithmic) sublaver, and, if present,
the wake region[2].

At first, researchers thought that the instability that made a flow become turbulent was
to be found mainly in the outer flow. They suggested that the velocity fluctuations found
in the outer flow were associated with large eddy structures. These, in turn, fed energy
to smaller and smaller eddy structures until, at the wall, the smallest eddy structures
transferred the energy to the wall as heat. In this sense, the outer flow controlled the
motion of the fluid in the viscous wall layer. The fluid near the wall responded to the
velocity fluctuations of the outer flow without influencing the outer flow. This model is
not "wrong;" the large eddies do feed the smaller eddies. However, later research showed
that the motion of Lhe fluid in the viscous wall layer might have a strong influence on the
fluid in the outer flow.

• m | |2



1.3 Turbulent Kinetic Energy

At present, the model of fluid turbulence in a wall bounded flow surrounds the two main
contributors to the turbulent kinetic energy budget (see Section 6)-the production and
dissipation of turbulent kinetic energy. Researchers have found that the production and
dissipation do not add to zero in the viscous wall layer; there is extra turbulent kinetic
energy available. The result is a supply of turbulent energy to the outer flow, where it is
dissipated. Thus, the velocity fluctuations in the outer flow can result from an influx of
turbulent kinetic energy from the viscous wall layer. This is a far different notion than the
earlier model which suggested that the fluid in the viscous wall layer merely responded to
the fluctuations of velocity in the outer flow. Recent measurements show that the viscous
wall layer contributes to those fluctuations; in fact, the motion of the fluid in the viscous
wall layer may control the motion of the outer flow. The eddies in the viscous wall layer
still seem to be influenced by the outer flow. This suggests that there may be a feedback
involved in the process. This model, which is far from the final model, is the starting point
for the present work.

Currently, the interest is in developing techniques for examining the eddies in the
viscous wall layer. Instead of a pipe flow, however, the present study is performed on the
flow field between two parallel, flat plates. Thus, the flow field geometry is more closely
related to channel flow, although the features of the flow field are quite similar to pipe
flow. This paper documents the initial verification that the simulation reproduces nature.

1.4 The Present Study

As expected from the periodicity[3] in turbulent flow, Fourier methods arise naturally in
the analysis of turbulence and they are exploited in the present study. A direct numerical
simulation of turbulent channel flow, using spectral techniques, has been developed[4], and
the results are compared to experimental measurements. Since many models exist that
predict mean quantities in turbulent channel flow, the most accurate of those models is
also discussed as a comparison to the direct simulation.

Research on turbulent fluid flow has been invigorated in the past ten years by the devel-
opment of supercomputer simulations of flow fields, although direct numerical simulation
of turbulent flow in a simple geometry is still a formidable task. The difficulty resides in
the wide range of spatial scales; hence, the computational domain must be sized to capture
the largest scale of motion while at the same time have small enough grid spacing to resolve
the smallest relevant scale. Three dimensional effects must also be considered because of
the nonlinear terms in the Navier-Stokes equations, v.Vv. These represent the conversion
of linear momentum into angular momentum, or the formation of vorticity. To account
for vorticity, calculations in three dimensions are required, even for channels where the
time-averaged flow is two-dimensional.
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2 Background

2.1 Reynolds Decomposition of the Navier-Stokes Equations

The equations governing the motion of an incompressible fluid are the Navier-Stokes equa-
tions: &%= -v.Vv - _Vp + vV 2v (1)

at
and the continuity equation:

V-v= 0. (2)

In these equations, v is the instantaneous three dimensional velocity vector, t is the time,
p is the density of the fluid, p is the hydrodynamic pressure, and v is the kinematic viscos-
ity. Here the coordinate system is Cartesian, and (X,,x 2 ,x 3 ) are the streamwise, normal,
and spanwise directions in the channel geometry with corresponding velocity components
(v,,v 2 ,v3 ).

If the instantaneous velocity vector is replaced in Equations 1 and 2 with a velocity
vector that is decomposed into a mean flow, V, and a fluctuating velocity, Z/, such that:

v = V + v (3)

then the resulting "Reynolds-decomposed" Navier-Stokes equations contain an additional
tensor:

i = -p~. (4)

Here, rij is the Reynolds stress tensor,/:, and Q, are the components of the instantaneous
velocities, and the overbar represents the time average.

This decomposition into mean flow and turbulent velocity fluctuations isolates the
effects of the fluctuations from the mean flow. Now, however, there are nine components

of rij (six are independent) in addition to the p and the three components of V. Herein
lies the closure problem of turbulence. While this produces additional stress terms, it does
allow solution of the time-averaged Navier-Stokes equations.

One common method of closing the equations is to use the similarity of the form of the

Reynolds stress to the viscous stress in the Navier-Stokes equations. An eddy viscosity, V,
is defined by:

712 PVtoU(x2) (5)

where U(x 2) is the streamwise component of the mean velocity.

2.2 Channel Flow

The best empirical fit of the velocity profile in a flat-walled channel can be represented by

the function for the eddy viscosity developed by Reynolds and Tiederman[5]:

1 v1 + F 2 G2  (6)
2 v 2
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where
F - v -- /) 1 2 )- -- - 2 h

and

G [1exp o

In this equation h is the half-height of the channel, r is the local shear stress, 1 is the von
Kairmimx parameter, A0 is the van Driest parameter, and r,±, is the shear stress at the wall
defined as:

T=PVdU(X 2 )1 7
d 2  IX 2 =0

When this value for the eddy viscosity is substituted into the mixing length model for
the Reynolds stress, and that in turn is used in the Reynolds-decomposed Navier-Stokes
equations, an excellent approximation to the time-averaged flat-walled channel velocity
profile results.

Unfortunately, this result tells us nothing about the dynamics of the flow field; specif-
ically, it does not describe the instantaneous interaction between the wall and the outer
flow. Since it is based on empirical data, an experiment is generally required to tune
the parameters[6,7,8]. Direct numerical simulation has no such requirement and has the
advantage of generating instantaneous velocities in three dimensions. This produces a
"computer experiment," that can focus other experimental techniques, such as pulsed
laser velocimetry[9] and multi-probe hot wire anemometry1,10,11. At present, direct
numerical simulation is limited to simple geometries and low Reynolds numbers.

2.3 Viscous Units

It is convenient to mention viscous units here, which result from making velocity and
hydrodynamic pressure dimensionless. This is accomplished with the wall parameters
kinematic viscosity, v, and skin-friction velocity, v*. Viscous units are denoted by giving
the quantity a plus sign superscript.

Thus, hydrodynamic pressure, velocity, and length will be made dimensionless in the
following manner:

p+ p + Vi + V*

Sp*2 " Xi = -Xi. (8)
2 VV V

This allows comparison with experimental results that do not have the same half-height
as the channel in the computer experiment.

3 A Model of Wall Turbulence

Although the velocity fluctuations in a turbulent flow field are random, coherent structures
exist in the viscous wall layer. This was first observed by Beatty, Ferrel and Richardson[12]
who showed "streaky structures" that were oriented with the mean flow and repeated
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Figure 2: Conceptualization of Coupled Near-Wall Structures

periodically in the direction perpendicular to the mean flow (the spanwise direction in
channel flow). These streaky structures, marked with dye or hydrogen bubbles, were
found to be regions of low velocity fluid; hence, the fluid had low momentum. The region
between the streaky structures contained high momentum fluid.

Streaky structures, marked with dye, traveled downstream and then were lifted away
from the viscous wall layer toward the outer flow where they dissipated. This process has
been referred to as bursting, and it occurs periodically.

Quantifying bursting and the spacing of streaky structures has been accomplished by
many researchers (see Blackwelder and Haritonidis[13]). These quantities are independent
of Reynolds number and are found, when made dimensionless with wall parameters, to
be A+ : 100 for the spanwise spacing of the streaky structures. The length of a streaky
structure is roughly 10 times its width[14]. Further experimental work showed that the
streaks were associated with eddies.

In an effort to explain this behavior, Hanratty[14] developed the picture first presented
by Townsend[15]. Hanratty suggests that these eddies have inflows and outflows that are
of the same strength and that, in a time-averaged sense, the in- and outflows are coupled,
as shown in Figure 2. The eddies create streamwise velocity fluctuations by bursting and
bringing low momentum fluid from the wall into the outer flow. The opposite is also true;
i.e., they carry high momentum fluid toward the wall. High momentum fluid is transported
by negative (toward the wall) normal velocities; low momentum fluid is transported by
positive normal velocities. Hence, with this transfer process, when the normal velocity is
positive, the fluctuating streamwise velocity is negative. This means that both in- and
outflows are associated with large values of negative Reynolds shear stress, - 1i 2 .

6



4 Governing Equations and Method of Solution

The Navier-Stokes equations and the continuity equation (Equations I and 2) can be
rewritten using the following definitions:

P P 1  2 2
W=Vxv; H'T = V =v.v (9)

p p 2

where w is the vorticity. Term IT is the total pressure consisting of the mean, P, and
fluctuating, P, hydrodynamic pressure and the dynamic pressure. The advection term in
the Navier-Stokes equations becomes:

VV = -v x W + 1Vv2 (10)
2

and the Navier-Stokes equations can be written with vorticity explicit:

=v x -V IT + V 2v. (11)at

This form of the equations makes the numerical solution somewhat easier.

4.1 The First Fractional Time Step

A three-level fractional step method, developed by Orszag[16], is used to solve the equa-
tions. This amounts to setting the left-hand side of Equation 11 equal to each one of the
terms on the right-hand side separately (hence, three steps).

By subtracting the mean streamwise hydrodynamic pressure gradient (the mean span-
wise and normal gradients are zero) from the second term on the right-hand side of Equa-
tion 11 and modeling the streamwise advective term implicitly to reduce convective insta-
bility, the advection part of Equation 11 becomes:

+ U(x 2 ) =H U( 2 ) (12)at ax, x
where U(x 2 ) is the streamwise component of the mean velocity. Function H is equal to

W 1-P where .L. is the mean streamwise hydrodynamic pressure gradient. Solving

Equation 12 by application of a Crank-Nicholson scheme to the left side and an Adams-
Bashforth scheme to the right side gives the following result:

vl -,V 3 n_1 HnI_1 U iX2)f Nn~ j " ai ,n-
- -H __5L_ - 2- + ], (13)

At 2 2 2 aXI ax1  a I

the superscript refers to the time step and the hat (e.g., i') represents quantities resulting
after the first fractional time step, also called the "inviscid step." Solving for -,V+1 gives
the velocity after the first fractional time step.

7



4.2 The Second Fractional Time Step

The no-penetration boundary condition, v 2 = 0 at the walls, is applied at the second
fractional step. An implicit Euler scheme is used which results in:

V _n+ I __+ -At VflP + ]. (14)

Hence the second step imposes incompressibility and the effects of pressure, and the double
hat refers to the velocity after this step. The total pressure (IT) was modified for the first
step by subtracting the mean hydrodynamic pressure. Now term I contains the fluctuating
hydrodynamic pressure, P5, and the dynamic pressure so the subscript T will no longer be
used:

132~(15)
p 2

The original method of Orszag's did not properly enforce the boundary condition for
the pressure field, and continuity was not satisfied at the walls. Using a Green's function
method (see Lyons [4]) in this second step corrects the calculated pressure field and satisfies
continuity. The pressure term is determined by requiring the divergence of the velocity
field to be zero after the second fractional step:

V -v
, + 1  0. (16)

Thus, from 14:

v 2fn +1 (17)

with the boundary condition:

afntI,+l = O2 i" 1 .1 " (18)

"'X 2 X2 0X2=O

This is a linear inhomogeneous equation with inhomogeneous boundary conditions. The
equation can be split into two parts (an inhomogeneous equation with homogeneous bound-
ary conditions and a homogeneous equation with inhomogeneous boundary conditions).
Additionally, the pressure (IT) is expressed as the sum of an inviscid and a viscous pres-
sure. The viscous part of the pressure satisfies the homogeneous equation, and its boundary
conditions are satisfied if and only if continuity is satisfied at the walls. In other words,
the inhomogeneous boundary condition is satisfied if and only if Equation 16 is true at
the walls. The inviscid part satisfies the inhomogeneous equation, although this does not
insure continuity is satisfied.

4.3 The Third Fractional Time Step

The final step takes viscosity into account and imposes the no-slip boundary conditions,
v n + 1 = 0, at the walls. It is an implicit backward Euler scheme:

vn+1 _ Vn+ __ vAt . V 2 vn+l. (19)

8



Non-wall boundary conditions are periodic; the outflow at one "end" is introduced as the
inflow at the other "end." This assumption makes the problem suitable for a Fourier or
"spectral" approach. (It is reasonable if the dimensions in the spanwise and streamwise
computational domain are more than twice the largest relevant scale of motion in these
directions. This information is obtained by experiment, and is discussed below.)

4.4 The Temperature Field

Additionally, a temperature gradient is imposed on the flow field. The walls are held at
constant temperatures that are different from each other. The temperature field is then
solved in the first and third fractional steps of the computation. The temperature equation
is O 2

s -v.VT + -VT (20)
Pr

where T is the temperature and Pr is the Prandlt number, which is a ratio of the kinematic
viscosity (momentum diffusivity) to the thermal diffusivity. The thermal diffusivity is the
ratio of the thermal conductivity to the density and heat capacity.

In order to get homogeneous, Dirichlet boundary conditions the temperature is trans-
formed by

T = 9- Ax 2  (21)

where 0 is the transformed temperature and A is a constant that controls the temperature
difference between the two walls. Following the same procedure as for the convective (first)
step of the Navier-Stokes solution scheme, and denoting -v • VO - At2 as I, the result is

__+_-0'_ 3I 1I- 1U &9O' +-z 99f'l 0"=-

_n+ _ 9n - + - -1 (22)
At 2 2 2 U(X2)[-X +i 0x r

The solution scheme is the same as for Equation 13.
Since there is no pressure term in the temperature equation. the remaining terms are

solved in the third fractional step as in Equation 19:

n + 1 - o n+ Pr ' (23)

and the boundary conditions are homogeneous.

4.5 The Spectral Technique

Using the spectral method of Orszag[16], the velocity field, v = (vI, V2, v3), can be trans-
formed using the following expansion:

v(x,t)= N m ,(t)exp 27ri Lx- + T3 (x" ) (24)

9
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In this equation, L and M are the number of Fourier modes in the x, and X3 directions, 7,
is a Chebyshev polynomial in the X2 direction and N is the degree of the polynomial. Terms
A 1 and A3 are the lengths of the computational domain in the streamwise and spanwise
directions, and h is the channel half-height as shown in Figure 3. The Fourier coefficients
of the expansion are represented by vj,,(t), and these are referred to collectively as the
velocity field in spectral space. The hydrodynamic pressure and the temperature fields are
expanded in a similar manner.

This transformation reduces the problem from solving partial differential equations for
the velocity, pressure, and temperature fields to solving equations for the spectral coeffi-
cients of the physical fields. Spatial derivatives of the velocity field are easily calculated
in spectral space; the first derivative of the velocity field in spectral space with respect to
the streamwise direction is equal to the the original coefficients multiplied by the factor
27ri1/Al. Derivatives with respect to the normal direction are slightly more complicated,
but do not require finite differencing and are exact.

The coefficients of the Fourier and Chebyshev series expansions are determined by
forcing the series to be an exact representation of the corresponding velocity, temperature,
or pressure field at the grid points. A Chebyshev series can be rewritten as a Fourier
series; this is used to re-arrange Equation 24 to be the sum of three Fourier series. This
allows calculation of the physical space fields by fast Fourier transform-and thus allows
calculation of the spectral space coefficients by inverse fast Fourier transform.

4.6 The Solution Scheme

In the sorution scheme, the spectral representations of the velocity, temperature, and
pressure fields are substituted into the various finite difference equations in the three
fractional steps.

10



In the first fractional step, the terms in function H are computed in physical space.
This is done by transforming the velocity and vorticity fields to physical space via fast
Fourier transform, then transforming the resulting "H" field back to spectral space. Also,
this procedure is used for the first fractional time step in the temperature field. These terms
and the spectral expansions for the velocity and temperature fields are then substituted
into Equations 13 and 22.

The second and third fractional steps do not require terms to be calculated in physical
space. In these steps, the spectral expansion is substituted into the appropriate finite
difference equation and, with some manipulation, the values of the various fields are cal-
culated at the next time step. Since the Navier-Stokes equations describe the motion of
the fluid, the dynamics of the flow field are reproduced numerically.

As described, this spectral method produces a finite grid of points with sine waves,
representing the velocity, superimposed upon it. These sine waves are multiplied together
in the vorticity-velocity cross product of the Navier-Stokes equations, resulting in sums
and differences of wavenumbers (inverse wavelength). Longer wavelengths can be resolved
on the grid, but the shorter wavelengths can not be resolved and are aliased onto longer
wavelengths. (Note that the summations in Equation 24 are centered on zero; hence,
infinite wavelength can be resolved but wavenumbers greater than half the number of
Fourier modes can not be resolved.) In nature, the energy of the short wavelengths would
produce heat, not kinetic energy. To rid the simulation of the short wavelengths, the top
third of the wavenumbers in the streamwise and spanwise directions are set to zero before
forming the products. This is referred to as "dealiasing." It would appear that half of the
wavenumbers should be set to zero in order to dealias, but Orszag[17] has shown that one
third is sufficient.

4.7 Other Research

Two other research groups have worked on direct numerical simulation and have developed
slightly different solution schemes. Moin and Kim[18] typically have used finite difference
schemes in place of the Chebyshev polynomial. Similarly, Kleiser and Schumann[19 use
finite differences, although in the solution they employ sequences of one-dimensional scalar
Helmholtz equations instead of solving block- t ridiagonal matrice' .

To date, the results of Moin and Kim[18] and Orszag and Kells[17] appear to reflect
turbulent channel measurements the best. Orszag and Kells were more interested in the
transition from laminar to turbulent flow; consequently, their algorithm is not suitable for
higher Reynolds numbers. The work of Moin and Kim has approximately the resolution
of this current study.

5 Computational Parameters

In this numerical study, the dimensionless half-height of the channel was 150 viscous units
for a Reynolds number of 2260 based on this characteristic length scale (approximately a

11



pipe Reynolds number of 8,000). The Reynolds number is h where vb is the bulk velocity,
or the integral of the average velocity over the height of the channel. To resolve the large-
scale eddies, the spanwise and streamwise dimensions were set at 950 and 1900 viscous
units. This produced a bulk velocity of 13.8 in viscous units. The number of spectral
modes for the results shown in this paper were (L, N, M) = (128,128,128).

The Reynolds number determines the largest and smallest scales of motion in the flow
field, and it is fixed by the half-height, h+. This can be shown by a force balance over
the computational domain (see Figure 3). Since, in the spanwise direction, the average
velocity is zero and there is no hydrodynamic pressure gradient, the force balance is:

2hA3(Pl - P12) + phA3(v2 - T2) - 2AIA 3 Ir.1 = 0. (25)

This can be reduced because the average velocity is the same at cross sections 1 and 2,
and the hydrodynamic pressure gradient is constant:

dP+  1 (26)
dxi+ = -h+

Thus picking a half-height determines the mean pressure gradient, which is the driving
force. The pressure gradient fixes the Reynolds number since average velocity, kinematic
viscosity, and the length scale are fixed.

At this point, the other lengths in the computational domain may be determined. A
periodic boundary condition can be used if the computational domain is at least twice the
size of the largest periodic structure. The appropriate functions for determining this size
are the two-point velocity correlation functions, one in the streamwise direction:

R,,(AxI, 0, 0) = V,(XI, X2, X3)v,(XI + AXI, x 2 , x 3 ) (27)

and a similar function in the spanwise direction. From experimental data[201 the two-point
velocity correlation functions vanish at 3.2h+ in the streamwise direction and 1.6h+ in the
spanwise direction, while others[18] suggest values of 6h+ and 3h+. Before vanishing, these
two-point velocity correlation functions become negative, and at this spanwise distance
distinct streamwise streaks form near the wall in hydrogen bubble experiments[3].

The small scales of motion must also be considered in order to determine the minimum
number of grid points or Fourier modes. Relevant scales would begin with the Taylor
micro-scale, which fixes the rate of dissipation of turbulent kinetic energy, and increase in
size. The smallest scales, the Kolmogoroff scales, are purely dissipative and thus are not
important in the direct simulation, although they are crudely represented by dealiasing.
Experimental measurements[ 11] show the Taylor micro-scale to be about 12 viscous units
in the spanwise direction and ten times that in the streamwise direction at the wall, where
the scales are smallest. Table 1 shows that the Taylor micro-scale may not be resolved at
the wall in the spanwise direction for this calculation. Results suggest that this is a minor
shortcoming.

Using these values, the size of the computational domain and the grid spacing can be
determined. Table 1 shows the resolution available in the current study. The modes were
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Direction Length Modes Resolution Resolvable Scales

Spanwise 950 85 11.18 22.4 to 475

Streamwise 1900 85 22.35 44.7 to 950

Normal 300 128 3.68 .01 to 300

Length, resolution and resolvable scales in viscous units.

Table 1: Computational Domain Resolution

adjusted for dealiasing. Also, in the normal direction the spacing is stretched toward the
channel center so that near the wall, where the smallest scales are present, the resolution
is highest.

6 Method of Analysis

6.1 General Averages of Turbulence Quantities
The solution procedure outlined above generates a computer experiment that is similar
to physical experimental facilities, such as water tunnels using particle image velocimetry
and laser-Doppler velocimetry. One advantage of the computer experiment is the relative
simplicity of obtaining instantaneous, three dimensional velocity measurements at any
number of locations, simultaneously, in the flow field.

In the present work the reduction of data that would accompany a physical experiment
has been performed, including averages of velocities and moments of velocity. For a physical
experiment the averages would be taken either as an ensemble or in time. Thus, at one
point in the flow field the mean velocity would be given by:

1 to+t,V-=li v dt (28)
ti--or tt t.

where tt is some elapsed time. A spatial average is used in this work such that a plane of
grid points in physical space, parallel to the solid walls, forms the basis of the average. To
get higher-order statistics, several planes are averaged together.

Averages of the fluctuating velocities and their moments will be presented. The normal
and spanwise mean velocities are zero. The second-order moments are the components of
the Reynolds stress, but are also called turbulence intensities. The third- and fourth-order
moments are referred to as the skewness (iivjk) and flatness (i3 Qsi3k). Skewness and
flatness, involving velocities in two directions, are not well understood, and thereforc only
i3 and b!' are presented.
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6.2 The Turbulent Energy Budget

Turbulent energy production and dissipation are also of interest. An equation, commonly
called the turbulent kinetic energy budget, that governs the mean kinetic energy, 1 of
the turbulent velocity fluctuations can be obtained from the Navier-Stokes equations. Mul-
tiplying Equation 1 by the fluctuating velocity, taking the time average, and subtracting
the mean kinetic energy budget gives:

± 2 - 2visi) 2 jij. (29)

-- iji Ox 2 v i i~ p-

The mean strain rate, SO, and the strain-rate fluctuations, Sik, are the symmetric parts of
the mean and fluctuating deformation rates. The total deformation rate is

O vi = sj  +  r'j  = 1 \Oxj +  0 :, +  2 \ vx -ax, (30)

and the mean and fluctuating rates are similarly defined.
Equation 29 shows that the rate of change of the turbulent kinetic energy is due to two

kinds of deformation work and three forms of transport. If the energy flux in a control
volume is zero, two of the transport terms (the second and third terms on the right-hand
side) redistribute the energy from one location to another. The pressure gradient-velocity
interaction (the first term on the right-hand side) arises from pressure fluctuations. In
an incompressible fluid the contribution of the mean pressure to the deformation work is
zero, but the fluctuating pressure contributes to the turbulent kinetic energy. Thus, the
first two terms represent the interaction of the velocity with the sum of the fluctuating
hydrodynamic pressure and the dynamic pressure.

Deformation-work terms, the last two terms on the right-hand side, represent turbu-
lence production and viscous dissipation. Turbulence production describes the exchange
of kinetic energy between the mean flow and the fluctuations. Viscous dissipation is the
rate at which viscous stresses perform deformation work against the fluctuating strain rate.
These terms are of interest in an instantaneous sense, too, as described in the introduction.

For plane channel flow, Equation 29 may be written as:

.++dV +  a9 /1~ ++. /+

= a + - (9 +

892 (8)-'++2 (31)
02

The five terms on the right side of this equation are the production, turbulent transport,
fluctuating pressure gradient-velocity interaction transport, rate of viscous diffusion, and
the isotropic dissipation of turbulent kinetic energy, respectively. They are hereafter de-
noted as P, T, 9, V, and D, respectively. In this more specific case, terms T and 9 are
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associated with only the normal velocity fluctuations, and term V is affected only by the
change in the normal direction. Term P is reduced to the Reynolds shear stress interaction
with the mean flow velocity gradient, and this is the major source for turbulent kinetic
energy. This shows the importance of the Reynolds shear stress. Since term D is isotropic
(in its expansion, there are nine terms), it remains unchanged. This term is important
when near the wall; far from the wall its contribution is almost zero. Its role is to transport
turbulent kinetic energy to the wall, where it is dissipated.

7 Results

The initial flow field was laminar with small random fluctuations in two dimensions (zero
divergence determines the third component). The calculation was allowed to run until the
average streamwise velocity profile settled down to steady, fully developed turbulent flow.
At the grid dimensions mentioned above this took about 300 hours of Cray 2 time.

The computed velocity results are shown in Figure 4. They are compared with the hot
wire anemometer data of Eckelman[21] and the laser-Doppler velocimetry measurements of
Niederschultze[22]. If the data were plotted with semi-logarithmic scales, a "logarithmic"
layer would be present in the data of Eckelman, but not in the other two sets of data. This
is due to the low Reynolds number of the latter sets of data (roughly a value of 2200),
while the data of Eckelman are at a Reynolds number of 5600. The "logarithmic" layer
(see Figure 1) appears at a Reynolds number of about 4000.

Turbulence intensity profiles are shown in Figure 5 and Figure 6. Another second-order
statistic profile, the Reynolds shear stress, is shown in Figure 7. The streamwise turbulence
intensity is compared to Eckelman and to Niederschultze; note the maximum in the center
of the shear layer near the wall at a distance of 12 viscous units. The normal and spanwise
profiles are similar, although the maxima are not as pronounced. Good agreement exists
between the computed data and the experimental data, although the maxima are slightly
less for the computed data. Hot wire anemometer data are typically high when measuring
values in the directions perpendicular to the bulk velocity, as shown in the figures. The
discrepancy in the spanwise maximum can not be explained.

Skewness and flatness profiles are shown in the next four figures; the results are as
expected. Note that they are significantly different from the Gaussian value of zero (for
skewness) and three (for flatness), although this is the same behavior as that found by
Niederschultze. The values of the flatness near the wall are somewhat large, when compared
to the experimental data. Even with laser velocimetry, third- and fourth-order statistics
are difficult to measure close to the wall. However, the high value of the flatness in the
streamwise direction suggests that the simulation does not match nature in this respect.
Note that the spanwise skewness and the normal flatness approach their Gaussian values
in the outer flow.

Figure 12 is the total turbulent kinetic energy budget, as described by Equation 31.
Since the normal and spanwise contributions to the total turbulent kinetic energy budget
are very small when compared to the streamwise component, the total budget is very
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similar to the streamwise budget. The ternis identified on the figure are those described
in Section 6. Unfortunately, there are no experimental data to compare with; however,
the values are very similar to predictions made from pure shear flows and extrapolated to
channels[2]. As explained in the introduction, the production and dissipation of turbulent
kinetic energy (curves P and D) are such that the transport of kinetic energy is away
from the viscous wall layer. This is shown in the Figure 12; the transport terms appear as
negative quantities.

Figure 13 shows a spanwise-normal "slice" of the instantaneous velocities in the span-
wise and normal directions. Each velocity vector originates from one of the grid points in
the solution scheme (the grid points are in a rectangular array). Along the walls (X2=0
or 300) there are several eddies, which appear as circular masses of vectors, as well as the
associated in- and outflows that are shown schematically in Figure 2. Note the outflow at
X2=0 near X3=750 and the inflow near X3=300; these eddies are about the size (50 units)
that would produce the spacing of the streaky structures discussed in Section 3. In- and
outflows do not appear to be spaced every 100 units in this slice. Future work will involve
averaging techniques to examine the near-wall turbulent structure.

Although the temperature gradient was included in the calculations, there are no sig-
nificant results to be presented. When vector plots are made on color-graphics terminals,
the transport of heat can be seen. This ability to track other transport properties of the
flow field may be of interest in future work.

8 Conclusions

A direct numerical simulation of turbulent flow has been compared with experimental
results. The computed averaged quantities agreed closely with those values obtained in
the laboratory. There are discrepancies in the maximum values of the second- through
fourth-order statistics. The maximum value of the streamwise turbulence intensity is
about ten percent lower than what is found experimentally. Since the experimental data
are considered very accurate, the numerical simulation is flawed in this respect. It is
possible that the streamwise length of the computational domain is not large enough and
structures that should have died out are re-introduced to the flow field. This would have
the effect of extending the correlation length, which in turn would lower the absolute
values of the zero-separation correlation, or the turbulence intensity. Since the computed
turbulence intensity matches the experimental values in the normal direction (for the laser
velocimetry data), the streamwise values are even more suspect. Currently, efforts are
directed to increasing the computational length in the streamwise direction by a factor of
two, while maintaining the same resolution. These results should be available for the next
report.
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Similar arguments hold for the skewness and flatness, although the experimental data
for these statistics are not as reliable as the second-order moments. The unusually high
flatness at the wall suggests that more resolution is required near the wall to sort out the
contributions of various sized structures, although calculations with less resolution seem
to capture the smallest relevant scales.

Future direction for this computer simulation involves investigation of the eddies in
the viscous wall region. This work will center around some type of averaging technique.
There are many techniques that are used to find structures in wall bounded flow fields[23].
Unfortunately, many of these techniques are akin to counting wheels on vehicles passing
by on a street corner: The average number is three, but not one tricycle rode past. An
averaging technique that allows counting events that are found instantaneously is needed,
instead of a technique that results in an average structure that may have no resemblance
to the instantaneous flow field at all.
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Nomenclature

The general system of nomenclature followed in this report is as follows:

1. A bold face symbol represents a three-dimensional vector quantity.

2. A subscript of 1, 2, or 3 represents the value of a quantity in a par-
ticular direction where:

(a) Number 1 represents the streamwise direction

(b) Number 2 represents the normal direction

(c) Number 3 represents the spanwise direction.

3. A subscript of i or j is used for indicial notation of vector quantities
and second degree tensor quantities when i and j appear together.

4. An overbar denotes a time average.

5. A tilde denotes a fluctuating quantity (see Equation 3).

6. A plus sign superscript denotes a dimensionless quantity (see Equa-
tion 8).

7. Upper-case represents the mean quantity.

Lower-case Symbols

Symbol Meaning

h Channel half-height

p Hydrodynamic pressure
t Time

V Velocity

v* Skin-friction velocity

x Direction in the computational domain
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Upper-case Symbols

Symbol Meaning

A Constant for temperature equation

Ao The van Driest parameter

L Number of Fourier modes in the streamwise direction
M Number of Fourier modes in the spanwise direction

N Degree of the Chebyshev polynomial (normal direction)

Rij Strain rate

sij Strain rate

T Temperature

TB+ Time between "bursts"

U(x 2 ) Streamwise component of the mean velocity

Re Reynolds number

Pr Prandlt number

Greek Symbols

Symbol Meaning

K The von K~rmin parameter

A Length of the computational domain
Ak+  Spanwise spacing of the streaky structures

v Kinematic viscosity

Ilt Eddy viscosity

p Density

r Local shear stress

7ij Reynolds stress tensor

1W Wall shear stress

0 Transformed temperature

W Vorticity

1I Modified total pressure

lIT  Total pressure
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